A direct vulnerable atherosclerotic plaque elasticity reconstruction method based on an original material-finite element formulation: theoretical framework.

نویسندگان

  • Adeline Bouvier
  • Flavien Deleaval
  • Marvin M Doyley
  • Saami K Yazdani
  • Gérard Finet
  • Simon Le Floc'h
  • Guy Cloutier
  • Roderic I Pettigrew
  • Jacques Ohayon
چکیده

The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3 ± 15.56%, 98.85 ± 72.42%, 103.29 ± 111.86% and 95.3 ± 10.49%, respectively, to values smaller than 2.6 × 10(-8) ± 5.7 × 10(-8)% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers

In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable  solids is presented, and  governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed  using the  principle  of virtua...

متن کامل

A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation.

Tissue elasticity reconstruction is a parameter estimation effort combining imaging, elastography, and computational modeling to build maps of soft tissue mechanical properties. One application is in the characterization of atherosclerotic plaques in diseased arteries, wherein the distribution of elastic properties is required for stress analysis and plaque stability assessment. In this paper, ...

متن کامل

Arterial luminal curvature and fibrous cap thickness affects critical stresses within atherosclerotic plaques: an in vivo MRI-based finite element method simulation study

Introduction: Atherosclerotic plaques may rupture without warning and cause acute thromboembolic events such as ischaemic strokes. It has been hypothesized that critical stress conditions at the vulnerable sites (i.e. where plaque rupture is likely to occur), may be closely related to plaque rupture. In mechanical terms, fibrous cap (FC) rupture occurs when the external loading exceeds its mate...

متن کامل

Free Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method

In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...

متن کامل

A four-criterion selection procedure for atherosclerotic plaque elasticity reconstruction based on in vivo coronary intravascular ultrasound radial strain sequences.

Plaque elasticity (i.e., modulogram) and morphology are good predictors of plaque vulnerability. Recently, our group developed an intravascular ultrasound (IVUS) elasticity reconstruction method which was successfully implemented in vitro using vessel phantoms. In vivo IVUS modulography, however, remains a major challenge as the motion of the heart prevents accurate strain field estimation. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 58 23  شماره 

صفحات  -

تاریخ انتشار 2013